The restricted isometry property for time-frequency structured random matrices

نویسندگان

  • Götz E. Pfander
  • Holger Rauhut
  • Joel A. Tropp
چکیده

We establish the restricted isometry property for finite dimensional Gabor systems, that is, for families of time–frequency shifts of a randomly chosen window function. We show that the s-th order restricted isometry constant of the associated n×n Gabor synthesis matrix is small provided s ≤ c n/ log n. This improves on previous estimates that exhibit quadratic scaling of n in s. Our proof develops bounds for a corresponding chaos process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suprema of Chaos Processes and the Restricted Isometry Property

We present a new bound for suprema of a special type of chaos processes indexed by a set of matrices, which is based on a chaining method. As applications we show significantly improved estimates for the restricted isometry constants of partial random circulant matrices and time-frequency structured random matrices. In both cases the required condition on the number m of rows in terms of the sp...

متن کامل

The Restricted Isometry Property for Random Block Diagonal Matrices

In Compressive Sensing, the Restricted Isometry Property (RIP) ensures that robust recovery of sparsevectors is possible from noisy, undersampled measurements via computationally tractable algorithms. Itis by now well-known that Gaussian (or, more generally, sub-Gaussian) random matrices satisfy the RIPunder certain conditions on the number of measurements. Their use can be limi...

متن کامل

Isometric sketching of any set via the Restricted Isometry Property

In this paper we show that for the purposes of dimensionality reduction certain class of structured random matrices behave similarly to random Gaussian matrices. This class includes several matrices for which matrix-vector multiply can be computed in log-linear time, providing efficient dimensionality reduction of general sets. In particular, we show that using such matrices any set from high d...

متن کامل

Robustness Properties of Dimensionality Reduction with Gaussian Random Matrices

In this paper we study the robustness properties of dimensionality reduction with Gaussian random matrices having arbitrarily erased rows. We first study the robustness property against erasure for the almost norm preservation property of Gaussian random matrices by obtaining the optimal estimate of the erasure ratio for a small given norm distortion rate. As a consequence, we establish the rob...

متن کامل

New and Improved Johnson-Lindenstrauss Embeddings via the Restricted Isometry Property

Consider anm×N matrix Φ with the Restricted Isometry Property of order k and level δ, that is, the norm of any k-sparse vector in R is preserved to within a multiplicative factor of 1±δ under application of Φ. We show that by randomizing the column signs of such a matrix Φ, the resulting map with high probability embeds any fixed set of p = O(e) points in R into R without distorting the norm of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1106.3184  شماره 

صفحات  -

تاریخ انتشار 2010